| Course<br>Type | Course<br>Code | Name of Course                          | L | Т | P | Credit |
|----------------|----------------|-----------------------------------------|---|---|---|--------|
| DC             | NMCC509        | Advanced Data Structures and Algorithms | 3 | 1 | 0 | 4      |

## **Course Objective**

• The objective of the course is to present the advanced data structures and algorithms in practice.

## **Learning Outcomes**

Upon successful completion of this course, students will:

- have the practical implementation of algorithms using efficient data structures.
- be capable of analyzing, design and implementing advanced algorithms
- be exposed to the various methods of designing techniques

| Unit<br>No. | Topics to be Covered                                                                                                                                         | Contact<br>Hours | Learning Outcome                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1           | Review of Basic Concepts, Asymptotic Analysis of Recurrences.                                                                                                | 5L+2T            | Understanding of asymptotic notations and basic mathematical preliminaries used in analyzing algorithms.              |
| 2           | Randomized Algorithms. Randomized Quicksort, Analysis of Hashing algorithms. Algorithm Analysis Techniques - Amortized Analysis. Application to Splay Trees. | 6L+2T            | This unit will help the students in understanding the randomized algorithms and amortized analysis of running time.   |
| 3           | External Memory ADT - B-Trees. Priority Queues and Their Extensions: Binomial heaps, Fibonacci heaps, applications to Shortest Path Algorithms.              | 6L+2T            | This will help in understanding the concepts and use of B-trees and various heaps.                                    |
| 4           | Partition ADT: Weighted union,path compression, Applications to MST.                                                                                         | 5L+2T            | Understanding of union and path data structures and their applications to MST.                                        |
| 5           | Algorithm Analysis and Design Techniques.  Dynamic Programming-Bellman-Ford,  Greedy Algorithms.                                                             | 6L+2T            | To understand different algorithm designing techniques.                                                               |
| 6           | Network Flows-Max flow, min-cut<br>theorem, Ford-Fulkerson, Edmonds-<br>Karpalgorithm, Bipartite Matching.                                                   | 6L+2T            | This will help students in knowing the concepts of network flows and their use in designing various graph algorithms. |
| 7           | NP-Completeness and Reductions, Cook's theorem, Satisfiability,                                                                                              | 4L+1T            | To know the concept of NP-completeness.                                                                               |
| 8           | Beyond NP-completeness, Introduction to different algorithms paradigms                                                                                       | 4L+1T            | Help the students in understanding what can be done beyond NP-completeness.                                           |
| Total       |                                                                                                                                                              | 42L+14T          |                                                                                                                       |

## Text Books:

1.T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to algorithms, PHI, 3rd Edition, 2010.

## **Reference Books:**

- 1. A. V. Aho, J. E. Hopcroft, J. D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1st Edition, 1982
- 2. J. Kleinberg, E. Tardos, Algorithm Design, Addison-Wesley, 1st Edition, 2005